Direct Discrimination Aware Data Mining

نویسندگان

  • Deepali Jagtap
  • Shirish S. Sane
  • D. Pedreschi
  • S. Ruggieri
  • P. N. Tan
  • M. Steinbach
چکیده

With the advent of data mining, in many applications the automated decision making systems are used to make fair decision, but there can be discrimination hidden in the decision made by system. Discrimination refers to treating person or entity unfairly based on their membership to a certain group. Discrimination can be observed not only in social sense but also in data mining. People do not want discrimination on the basis of gender, age, nationality, race etc. and many more; therefore it is important to prevent such discrimination. Discrimination prevention mainly consists of two steps: first is discrimination discovery and second is data transformation. The data transformation follows similar approach to that of data sanitization that is used in privacy preservation. Various discrimination measures can be used to analyze its effect on quality of the original dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward Accountable Discrimination-Aware Data Mining: The Importance of Keeping the Human in the Loop-and Under the Looking Glass.

"Big Data" and data-mined inferences are affecting more and more of our lives, and concerns about their possible discriminatory effects are growing. Methods for discrimination-aware data mining and fairness-aware data mining aim at keeping decision processes supported by information technology free from unjust grounds. However, these formal approaches alone are not sufficient to solve the probl...

متن کامل

Inference Mining using Direct and Indirect Discrimination Prevention in Data Mining

Data Mining is an essential and flourishing technology to extract the relevant and useful information hidden in the large collections of data. Privacy preservation in data mining is an important issue when considering the legal and ethical aspects of data mining. Discrimination is one of the facts that pave the way for negative perceptions in the data mining. Direct and Indirect discrimination ...

متن کامل

Simultaneous Discrimination Prevention and Privacy Protection in Data Publishing and Mining

Data mining is an increasingly important technology for extracting useful knowledge hidden in large collections of data. There are, however, negative social perceptions about data mining, among which potential privacy violation and potential discrimination. The former is an unintentional or deliberate disclosure of a user profile or activity data as part of the output of a data mining algorithm...

متن کامل

A survey on measuring indirect discrimination in machine learning

Nowadays, many decisions are made using predictive models built on historical data. Predictive models may systematically discriminate groups of people even if the computing process is fair and well-intentioned. Discrimination-aware data mining studies how to make predictive models free from discrimination, when historical data, on which they are built, may be biased, incomplete, or even contain...

متن کامل

Discrimination-Aware Association Rule Mining for Unbiased Data Analytics

A discriminatory dataset refers to a dataset with undesirable correlation between sensitive attributes and the class label, which often leads to biased decision making in data analytics processes. This paper investigates how to build discrimination-aware models even when the available training set is intrinsically discriminating based on some sensitive attributes, such as race, gender or person...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014